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Individual human health is determined by a complex interplay between genes, environment, diet,
lifestyle, and symbiotic gut microbial activity. Here, we demonstrate a new “nutrimetabonomic”
approach in which spectroscopically generated metabolic phenotypes are correlated with behavioral/
psychological dietary preference, namely, “chocolate desiring” or “chocolate indifferent”. Urinary and
plasma metabolic phenotypes are characterized by differential metabolic biomarkers, measured using
1H NMR spectroscopy, including the postprandial lipoprotein profile and gut microbial co-metabolism.
These data suggest that specific dietary preferences can influence basal metabolic state and gut
microbiome activity that in turn may have long-term health consequences to the host. Nutrimetabo-
nomics appears as a promising approach for the classification of dietary responses in populations and
personalized nutritional management.
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Introduction
Dietary preferences and habits, which are predominantly

cultural in origin, affect the health of both individuals and
populations.1 Food selection by an individual results from a
decision process which integrates multiple biological, socio-
economic, psychological, and behavioral determinants. Hunger,
satiety, palatability, and organoleptic and sensory aspects
represent the biological processes that guide a person toward
specific food preferences and food choices. In particular,
genetically mediated taste response to specific foods or ingre-
dients is ultimately reflected in various dietary preferences.2,3

Furthermore, genetic heritability has also been reported as a
significant contributor in eating habits.4 So far, no metabolic
phenotype (metabotype) has ever been ascribed to an indi-
vidual human dietary preference group. Variations in the basal
metabotype have, however, previously been shown to relate
to drug metabolism outcomes, as well as to influence the effects
of high fat diets in experimental animals.5,6 Thus, the ability to
classify an individual’s metabotype according to specific dietary
preferences, that in turn are part of complex behavioral traits,
would be of great potential value in health and well-being
assessment, personalized healthcare, and in molecular epide-
miological studies. Dietary composition impacts on the me-
tabolism of an individual, and dynamic responses of the
metabotype to dietary modulation are well-documented.1,6,7

Long-term dietary preferences associated with, for example,
high levels of saturated fat or carbohydrate consumption are
strongly associated with obesity and heart disease.8,9 There are
also clear differences between human metabolic phenotypes
associated with alternating vegetarian and omnivorous diets.7

Finally, there are strong interactions between dietary composi-
tion and gut microbial metabolic activities that might contrib-
ute to the development of insulin resistance and nonalcoholic
fatty liver disease.6 Recent studies have also highlighted the
importance of altered gut microbiota as possible major con-
tributors to calorific harvest10 and to obese phenotypes in
animal models11 and man.12 However, any stable basal meta-
bolic phenotype, that is, one that is not directly stimulated by
the dietary preference at the time of sampling, in man relating
to specific dietary habits would have to be regarded as
imprinted, and this could then be linked to longer-term health
risks and outcomes at the individual level. We have recently
shown that pharmacometabonomics, that is, individual me-
tabotype variations, in experimental animals can be linked to
post-dose drug intervention outcomes such as toxicity and
metabolism.5 Here, we extend this principle to human dietary
intervention studies, broadened to include metabotypes that
may be indicative of the dietary habits of the individuals; we
term this approach “nutrimetabonomics”. In this study, we have
used well-validated NMR spectroscopy-based metabotyping
methods13,14 coupled with multivariate statistics to identify
specific metabolic subclasses from plasma and urine samples
taken from biochemically unscreened adult males with a
questionnaire-determined dietary preference and classified as
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having strong “chocolate desiring” preference and “chocolate
indifferent” behavioral phenotype.

Materials and Methods

Experimental Design. This study was conducted in ac-
cordance with the ethical principles of Good Clinical Practice
and the Declaration of Helsinki, approved by the Nestlé ethical
committee, and all subjects gave written informed consent. The
hypothesis and the design of the human subject trial are given
in Figure 1. A total of 75 healthy men participated in the study,
and as a result of the scored chocolate eating habits question-
naire given in the Supporting Information, these were scored
between 6 and 30 as chocolate desiring (CD) or chocolate
indifferent (CI). Of these, 22 subjects were selected for biofluid
collection and data analysis, comprising 11 at each end of the
score range. Subjects were also matched according to age and
body mass index (BMI), and were selected according to medical
evaluation of a confidential health questionnaire. Exclusion
criteria included any strong food preference other than choco-
late, smoking, alcohol addiction, strong sport activity, medical
treatments or investigations, and chronic and temporary illness.
Women subjects were not selected in this exploratory study to
avoid confounding effects of the menstrual cycle on metabolic
profiles. Background information on the subjects participating

in the study is reported in Supplementary Table 1 in Supporting
Information. The experiment was designed as a double cross-
over clinical trial, during which a standardized diet was
provided to the subjects a day before and during the study
period to minimize biochemical variability of biological fluids.
During the study, chocolate, coffee, and their derived products,
tea, soft drinks, energy drinks, spicy foods, alcoholic beverages,
and any dietary supplement, were avoided. The total study
covered a period of 5 days, one test day with chocolate
consumption and one test day with bread taken as a placebo,
with a washout period of 1 day between each test day (Figure
1). On the first test day, a portion of a commercially available
chocolate (50 g) was given to half the participants of each group
to be eaten in the afternoon, and the other half received an
isocaloric amount of placebo (bread). Five samples of blood
were collected on both test days (P2 and P4) at 0 (P2-1 and
P4-1), 5 (P2-2 and P4-2), 15 (P2-3 and P4-3), 30 (P2-4 and P4-
4), and 60 (P2-5 and P4-5) min after chocolate/placebo intake.
Additionally, samples of the 24 h urine were taken at each day
of the clinical trial (U1-U4).

Sample Preparation and 1H NMR Spectroscopic Analysis.
Samples were codified with barcodes and randomly measured
using 1H NMR spectroscopy under automation using the Bruker
laboratory automation and management system (SampleTrack,

Figure 1. Nutrimetabonomic hypothesis. (a) Outline of the hypothesis linking dietary preference to metabolic phenotype. (b) Schematic
representation of the human clinical trial design. The total study period was 5 days, one test day with chocolate consumption and one
test day with bread taken as a placebo, with a washout period of 1 day between each test day. On the first day of the study, a portion
of a commercially available chocolate (50 g) was given to half the participants of each group to be eaten in the afternoon, and the
other half received an equivalent amount of bread. A controlled diet was provided to the subjects a day before and during the study
period to minimize variability. After the washout period, the participants who received chocolate first had bread and vice versa. Five
samples of blood on test days (P2 and P4) were collected at 0 (P2-1 and P4-1), 5 (P2-2 and P4-2), 15 (P2-3 and P4-3), 30 (P2-4 and P4-4),
and 60 (P2-5 and P4-5) min after chocolate/bread intake. Twenty-four hour urine samples (U1-U4) were collected on each day of the
clinical trial.
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Bruker, Germany). Plasma samples (360 µL) were introduced
into a 4 mm NMR tube with 40 µL of 2H2O as locking substance
and measured on a Bruker Avance 600 MHz spectrometer
equipped with an inverse probe. Three 1H NMR spectra were
acquired for each sample, (a) a standard spectrum using the
first increment of the noesy sequence (D1-90°-t1-90°-tm-90°-
free induction decay [FID]) with water suppression,15 (b) Carr-
Purcell-Meiboom-Gill (CPMG, D1-90°-(τ-180°-τ-)n-FID) spin-
echo sequence16 with water suppression (the analysis reported
in this manuscript did not use these data and results will be
reported later), and (c) diffusion-edited (D1-90°-G1-180°-G1-

90°-G2-∆-90°-G1-180°-G1-90°-G2-τ-90°-FID) sequence.17 The
standard spectra were acquired with a relaxation delay D1 of
2.5 s during which the water resonance is selectively irradiated,
and a fixed interval t1 of 3 µs. The water resonance is irradiated
for a second time during the mixing time tm of 100 ms. CPMG
spin-echo spectra were measured using a spin-echo loop time
(2nτ) of 19.2 ms and a relaxation delay of 2.5 s. Diffusion-editing
spectra were obtained using a relaxation delay of 1 s, pulsed
field gradients G1 and G2 set at 46.8 G‚cm-1, and a diffusion
delay ∆ of 120 ms during which the molecules are allowed to
diffuse. Urines samples (500 µL) were adjusted to pH 6.8 using

Figure 2. Multivariate data analysis of 1H NMR plasma metabolic profiles. (a) A 600 MHz 1H NMR spectrum of human plasma. (b) 3D
PCA scores plot for data from standard 1H NMR spectra from all plasma samples collected while under dietary control; blue square,
“chocolate desiring”; red circle, “chocolate indifferent”; PC1, PC2, and PC4, 55%, 12%, and 6% of the total variance, respectively. (c)
O-PLS-DA cross-validated scores (Tcv) plot (Q2 ) 0.15 (7-fold cross-validation) of samples before chocolate/placebo intake (P2-1 and
P4-1). CD and CI indicate “chocolate desiring” and “chocolate indifferent” subjects, respectively. (d) O-PLS-DA cross-validated scores
plot (Q2 ) 0.36 (7-fold cross-validation) of all samples showing that chocolate consumption has little effect on the model. (e) Coefficients
plot derived from all the plasma samples. The O-PLS-DA coefficients plots are presented using a back-scaling transformation, as described
previously,19 which allows each variable to be plotted with a color code which relates to the significance of class discrimination as
calculated from the correlation matrix. Positive peaks are from metabolites that are higher in the “chocolate indifferent” class.
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100 µL of phosphate buffer solution (KH2PO4, final concentra-
tion of 0.2 M) containing 1 mM of sodium 3-(trimethylsilyl)-
[2,2,3,3-2H4]-1-propionate (TSP). Urine spectra were then
registered on a Bruker Avance 600 MHz spectrometer equipped
with an inverse cryogenic probe. Spectra were acquired using
the standard sequence given above, with a relaxation delay of
2.5 s and a mixing time tm of 100 ms. For each plasma and
urine sample, 32 FIDs were collected into 65 536 data points
using a spectral width of 12 019.2 Hz and an acquisition time
of 2.7 s.

NMR Data Processing. 1H NMR spectra were processed
using the software package TOPSPIN (version 1.3, Bruker,
Germany). The FIDs were multiplied by an exponential weight-
ing function corresponding to a line broadening of 0.3 Hz for
standard plasma spectra. A line broadening of 1 Hz was applied
to plasma CPMG and diffusion-edited data as well as to urine
spectra. The acquired NMR spectra were manually phase- and
baseline-corrected and referenced to the chemical shift of the
methyl resonance of lactate at δ 1.33 for plasma spectra and
of TSP at δ 0.00 for urine samples.

Clinical Quantitative Measurements. Free fatty acids (data
not shown) were measured using a Wako enzymatic method
on a XPAND system (Dade Behring, Switzerland). High-density
lipoprotein (HDL) and low-density lipoprotein (LDL) choles-
terol were determined using the AHDL and ALDL Cholesterol
assay systems (Dade Behring, Switzerland).

Chemometrics. Full resolution spectra incorporating data
points within the δ 0.4-9.5 region were used for statistical
multivariate analysis excluding the water residue signal be-
tween δ 4.7-5 (plasma data set) and δ 4.5-6.5 (urine data set).
Statistical analysis was performed using the software package
SIMCA-P+ (version 11.0.0, Umetrics AB, Umeå, Sweden) and
in-house developed MATLAB (The MathWorks, Inc., Natick,
MA) routines. Initial data analyses were conducted using
principal components analysis (PCA), and detailed classification
studies used projection to latent structure-discriminant analysis
with filtering of data variables orthogonal to sample class (O-
PLS-DA)18 with unit-variance scaling (each parameter has a
mean of zero and a variance of one). This approach provides
a way to filter metabolic information which is not correlated
to the predefined classes, while the loadings yield information
on which NMR signals are associated with the observed
clustering, thus, giving a means for metabolic interpretation.
In the O-PLS-DA method, the variation in the X matrix (the
NMR spectra) and the Y matrix (the descriptive variables or
the classes) is separated into three parts. The first part contains
the variation common to X and Y, the second part contains
the specific variation for X, so-called structured noise, and the
last part contains the residual variance. The O-PLS-DA method
allows improved interpretation of the models because the
structured noise is modeled separately from the variation
common to the X and Y matrices. To test the validity of the
model against over-fitting, the cross-validation parameter Q2

was computed. The O-PLS-DA loadings plot was processed
according the method described by Cloarec et al.19 This consists
of combining the back-scaled O-PLS-DA loadings from a model
where the data had been autoscaled to unit variance with the
variable weights of the same model in the same plot. For this
purpose, each O-PLS-DA loading is first multiplied by the
standard deviation (back scaling) of its corresponding variable
and then plotted as a function of its related chemical shift but
with a color code linked to the weights of the selected latent
variable. In this way, the common resonances from metabolites

involved in the discrimination, that is, “chocolate desiring” and
“chocolate indifferent” subjects, are highlighted. The interpre-
tation of the loadings is therefore more straightforward because
the resulting plot provides roughly the same shape as that of a
real spectrum. The standard 7-fold cross-validation method
(repeatedly leaving out a seventh of the samples and predicting
them back into the model) was applied to establish the
robustness of the model. The assignment of metabolites was
achieved using a range of two-dimensional NMR spectroscopic
techniques on selected samples.

Results
Analysis of 1H NMR Spectroscopic Data on Plasma. A

typical standard 1H NMR spectrum of human blood plasma is
shown in Figure 2. Such spectra exhibit a broad set of
resonances arising from lipoprotein-bound fatty acyl groups
found in triglycerides, phospholipids, and cholesteryl esters,
together with peaks from the glyceryl moiety of triglycerides
and the choline head group of phosphatidylcholine. Also, many
sharper peaks arising from the major low molecular weight
molecules present in plasma are observed.20 PCA was per-
formed on the whole set of standard NMR spectra of plasma
taken when the subjects were under identical dietary regime.
The scores plot of the first, second, and fourth principal
components (Figure 2) explained 73% of the total spectral
metabolic variance and showed partial clustering of the
samples, when coded according to “chocolate desiring” or
“chocolate indifferent”, indicating an underlying class-deter-
mining metabolic fingerprint. This clustering indicates that
there are underlying metabolic differences between classes that
can be revealed by a simple unsupervised model. To determine
more precisely the metabolic biomarkers that discriminated the
classes, we used a cross-validated orthogonal-filtered partial
least-squares discriminant analysis18 (O-PLS-DA) approach
which showed a global structuring of the sample points
grouping “chocolate desiring” and “chocolate indifferent”
participants in distinct parts of the scores plot analogous to
the PC analysis (Figure 2). NMR spectra edited on the basis of
molecular diffusion coefficients, which have small molecule
peaks eliminated (data not shown), gave identical results in
terms of class separation (Table 1), showing that the discrimi-
nating substances are plasma macromolecular species. NMR

Table 1. O-PLS-DA Model Summary for Discriminating NMR
Spectra of Plasma and Urinea

biofluids NMR spectra time points R2X R2Y Q2

P-value,

Tcv

Plasma

Standard
All time points 0.73 0.40 0.36 3.2 × 10-25

P2-1 and P4-1 0.76 0.41 0.15 5.2 × 10-8

CPMG spin-echo
All time points 0.40 0.74 0.33 7.5 × 10-64

P2-1 and P4-1 0.33 0.57 -0.09 7.5 × 10-10

Diffusion-edited
All time points 0.61 0.58 0.28 2.4 × 10-42

P2-1 and P4-1 0.63 0.84 0.30 7.4 × 10-9

Urine Standard
All time points 0.20 0.78 0.39 6.8 × 10-30

U1 0.23 0.85 0.06 7.6 × 10-10

a O-PLS-DA models were generated with 1 predictive component and 2
orthogonal components to discriminate between 2 groups for plasma and
urine samples. Models were calculated using all time points for test days 1
and 2. Also, models were calculated for the specific time points P2-1 and
P4-1 before chocolate or placebo consumption. The R2X and R2Y values show
how much of the variation in the data sets X and Y, respectively, is explained
by the model. The Q2 value represents the predictability of the models, and
relates to its statistical validity. A negative value indicates that differences
between groups are statistically non-significant. Since the cross-validated
scores (Tcv) are assumed to follow a normal distribution, a paired Student’s
t test was applied between the two groups, and P-values were calculated at
a confidence level of 95%.
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data generated using a spin-echo pulse sequence,20 which
attenuates the signals of macromolecules, support this obser-
vation as noted with the nonvalidity of the models generated
on samples collected before chocolate/placebo intake (Table
1).

Interpretation of the back-scaled O-PLS-DA loadings19 for
the first latent component indicated that “chocolate indifferent”
class subjects are distinguished by significantly higher levels
of plasma lipids (Figure 2, Table 2) incorporated into lipopro-
teins. Plasma lipoproteins, namely, chylomicrons, chylomicron
remnants, very low-density lipoprotein, intermediate-density
lipoprotein, LDL, and HDL, differ in their composition (free
and esterified cholesterol, triacylglycerols, phospholipids, and
apolipoproteins), their size, and in their biological function.21

The 1H NMR spectrum of plasma contains information cor-
related to both chemical composition of lipoproteins and their
particle size, which allows changes in distribution of lipoprotein
classes and subclasses to be monitored.22,23 The spectral regions
from δ 0.8 to 1.4 comprises the complex methyl and methylene
signals from fatty acyl groups, and by correlation analysis, it is
the central parts of these peaks, mainly dominated by LDL
particles, that exhibit the strongest correlation with the “choco-
late indifferent” class.23 To validate these observations from the
data-driven metabonomic experiments, we performed inde-
pendent quantitative lipoprotein analyses for HDL and LDL
confirming the NMR observations (Figure 3). There was no
correlation between BMI and dietary preference class, and
indeed, nearly all subjects were essentially within the normal
range (Supplementary Table 1 in Supporting Information). In
addition, increased levels of unsaturated and polyunsaturated

fatty acyl species in lipoproteins and a decreased level of
albumin were also correlated to the “chocolate indifferent” class
(Table 2).

Analysis of 1H NMR Spectroscopic Data on Urine. Urinary
metabolic profiles give time-averaged representations of the
recent homeostatic metabolic changes of the individual and
carry indirect information on the gut microbial metabolic
activities, as observed through the excretion of many polar
microbial-mammalian cometabolites.6,24 A typical 1H NMR
spectrum of human urine is shown in Figure 4. Application of
O-PLS-DA resulted in clear clustering of samples (Figure 4,
Table 3) for all time points according to chocolate preferences.
Following the same procedure as previously described, the
O-PLS-DA loadings plot revealed resonances, which exhibit a
strong correlation with the classes. Some signals strongly
correlated with the “chocolate indifferent” class appear within
the spectral region from δ 1.0 to 1.2 (Figure 4). From the
correlation analysis, increased levels of 3-hydroxyisovalerate,
dimethylglycine (DMG), glycine, and citrate were observed for
the “chocolate desiring” class. On the other hand, isobutyrate,
methylsuccinate, acetone, acetoacetate, trimethylamine (TMA),
taurine, trigonelline, carnitine, and N-acetyl-carnitine were seen
to increase in the “chocolate indifferent” class. Within the
aromatic region from δ 6.8 to 8.0 (Figure 4), the two phenyl-
acetyl derivatives, phenylacetylglutamine (PAG) and 4-hydroxy-
phenylacetate (4-HPA), as well as 2-hydroxyhippurate (2-HHP),
are strongly correlated with the “chocolate desiring” and
“chocolate indifferent” classes, respectively.

Moreover, the analysis of correlations between aromatic
metabolites ascribed to gut microflora metabolism in each class

Table 2. Assignment of Statistically Significant Increases in NMR Signal Intensities in Plasma of “Chocolate Desiring” and
“Chocolate Indifferent” Subjectsa

increased in signal assignments moieties

δ 1H (ppm)

and multiplicity P-values

“Chocolate indifferent”

lipids (mainly LDL) CH3 0.86(m) 5.2 × 10-5

lipids (mainly LDL) (CH2)n 1.25(m) 1.8 × 10-6

lipids (mainly LDL) CH2-CdC 1.99(m) 1.2 × 10-5

lipids dC-CH2-Cd 2.75(m) 3.7 × 10-5

choline in phospholipids N-(CH3)3, OCH2, NCH2 3.21(s), 4.05(t), 3.51(t) 2.6 × 10-5

unsaturated lipids -CHdCH- 5.28(m) 2.3 × 10-10“
Chocolate desiring” albumin ε-CH2 2.90(t), 2.96(t), 3.02(t) 4.2 × 10-3

a δ 1H, chemical shifts calibrated against the lactate signal at δ 1.33; s, singlet; t, triplet; m, multiplet. Since metabolite concentrations do not follow a
normal distribution, the nonparametric Wilcoxon matched-pairs signed rank test was applied to preselected metabolite peak intensities scaled to the noise
level between the two groups, and P-values were calculated at a confidence level of 95%.

Figure 3. Comparison of blood plasma concentrations of high-density lipoprotein (HDL) and low-density lipoprotein (LDL) between
the “chocolate desiring” (CD) and “chocolate indifferent” (CI) subjects displayed using box and whisker plots. Statistical analysis was
performed using Wilcoxon matched-pairs signed rank test at a confidence level of 95% on the clinical quantitative measurements of
HDL and LDL done on a representative subset of plasma samples. The blood plasma levels of HDL (n ) 135, P ) 1.2 × 10-4) and LDL
(n ) 135, P ) 9.9 × 10-7) were significantly different between the two groups.
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was performed to provide deeper insights into the class-specific
microbial activities (Figure 5). The correlation matrix reports
the Pearson correlation coefficients between 1H NMR intensities
scaled to the noise level obtained from the different aromatic
metabolites and their respective P-values calculated at the

confidence levels of 95% and 90% for the “chocolate desiring”
(CD, blue) and the “chocolate indifferent” (CI, red) subjects.
Positive and negative correlations show the multicolinearity
between metabolites whose concentrations are interdependent
such as in the case of a substrate-product biochemical reaction

Figure 4. Multivariate data analysis of 1H NMR urine metabolic profiles. (a) A 600 MHz 1H NMR spectrum of human urine. (b) O-PLS-
DA cross-validated scores plot (Q2 ) 0.39 (7-fold cross-validation) of all samples. (c) O-PLS-DA loadings plot from the model back-
scaled and plotted as a function of chemical shifts. The back-scaled coefficients plot is color coded to the weights of the selected latent
variable. Positive peaks are from metabolites that are higher in the “chocolate indifferent” class. Individuals belonging to the “chocolate
desiring” class showed higher levels of 3-hydroxyisovalerate, citrate, dimethylglycine (DMG), glycine, phenylacetylglutamine (PAG),
and 4-hydroxyphenylacetate (4-HPA). “Chocolate indifferent” subjects had higher urinary excretion of isobutyrate, 2-methylsuccinate,
trimethylamine, N-acetyl-carnitine, carnitine, taurine, 2-hydroxyhippurate, and trigonelline.
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Figure 5. Correlation matrix between urinary host and microbial metabolites in “chocolate indifferent” and “chocolate desiring”
individuals. This figure reports the Pearson correlation coefficients between 1H NMR intensities scaled to the noise level obtained from
the different aromatic metabolites and their respective P-values calculated at the confidence levels of 95% (**) and 90% (*) for the
“chocolate desiring” (CD, blue) and the “chocolate indifferent” (CI, red) subjects. Positive and negative correlations show the
multicolinearity between metabolites whose concentrations are interdependent such as in the case of a substrate-product biochemical
reaction or under some common regulatory mechanisms across different pathways. Phenylacetylglutamine (PAG) shows significant
and non-class specific correlations with 4-hydroxyphenylacetate (4-HPA) and 4-cresol sulfate, two microbial metabolites, which may
indicate a relationship between microflora activity and the host liver and kidney metabolism. However, the correlations of
2-hydroxyhippurate (2-HHP) with hippurate and trigonelline are specifically observed in the CI group, while the CD group is characterized
by the correlation of trigonelline with PAG. These observations highlight a class-specific microbial modulation of dietary flavonoids
and niacin metabolism. Moreover, the conversion of 4-HPA to 4-cresol sulfate exhibits a negative correlation in the urine profiles of CD
subjects confirming an already established substrate-product biochemical relationship associated with the gut activity of C. difficile.
Interestingly, this relationship shows a non-significant correlation in the CI individuals. These findings suggest differential mammalian-
microbial metabolism for the considered metabolites between the “chocolate desiring” and the “chocolate indifferent” individuals.

Table 3. Assignment of Statistically Significant Increases in NMR Signal Intensities in Urine of “Chocolate Desiring” and
“Chocolate Indifferent” Subjectsa

high in

signal

assignments moieties

δ 1H (ppm)

and multiplicity P-values

“Chocolate indifferent”

isobutyrate CH3, CH 1.07(d), 2.39(m) 2.5 × 10-2

methylsuccinate CH3, CH, CH2 1.11(d), 2.13(dd),
2.52(dd), 2.62(m)

1.2 × 10-5

acetone CH3 2.24(s) 0.02
acetoacetate CH3 2.29(s) 0.87
trimethylamine (CH3)3-N 2.87(s) 1.0 × 10-4

N-acetyl-carnitine N(CH3)2, COCH3,
CH, CH2COOH,
CH2COOH, CH2N

3.19(s), 2.14(s),
3.85(dd), 2.65(dd),
2.51(dd), 3.61(d)

2.1 × 10-3

carnitine CH3, CH2COOH, NCH2 3.23(s), 2.44(dd), 3.43(m) 5.1 × 10-3

taurine S-CH2, N-CH2 3.26(t), 3.40(t) 5.6 × 10-3

2-hydroxyhippurate 6-CH, 4-CH,
3,6-CH, CH2

7.80(dd), 7.49(m),
7.02(m), 3.99(s)

1.1 × 10-2

trigonelline 2-CH, 4-CH,
5-CH, 6-CH,
CH3

9.28(s), 8.90(d),
8.21(dd), 8.99(d),
4.48(s)

3.5 × 10-2

2-hydroxyisobutyrate (CH3)2-C 1.36(s) 1.1 × 10-2

4-cresol CH3, 2,6-CH,
3,5-CH

2.34(s), 7.21(d),
7.28(d)

2.6 × 10-2

“Chocolate desiring”

3-hydroxyisovalerate (CH3)2-C 1.27(s) 6.1 × 10-2

phenylacetylglutamine 3,5-CH, 2,4,6-CH,
1-CH, 3-CH2,
2-CH2

7.43(m), 7.36(m),
4.18(m), 2.27(t),
2.11(m)

0.60

citrate half CH2, half CH2 2.54(d), 2.65(d) 0.60
dimethylglycine CH3 2.93(s) 7.8 × 10-2

4-hydroxyphenylacetate CH2, 2,6-CH, 3,5-CH 3.45(s), 7.17(d), 6.87(d) 0.90
glycine CH2 3.57(s) 0.23

a δ 1H, chemical shifts calibrated against the TSP signal at δ 0.0; s, singlet; d, doublet; t, triplet; m, multiplet; dd, doublet of doublets. Wilcoxon matched-
pairs signed rank test was applied to preselected metabolite peak intensities scaled to the noise level between the two groups, and P-values were calculated
at a confidence level of 95%.
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or under some common regulatory mechanisms across differ-
ent pathways. Statistically significant correlations were ob-
served for the following pairs of metabolites: 4-HPA/PAG,
4-cresol sulfate/PAG, 4-Cresol sulfate/Hippurate, 2-HHP/hip-
purate, and 2-HHP/trigonelline in the “chocolate indifferent”
group, and 4-cresol sulfate/4-HPA, PAG/4-HPA, PAG/4-Cresol,
hippurate/4-HPA, trigonelline/4-HPA, and trigonelline/PAG in
the “chocolate desiring” group (Figure 5).

Discussion

Consumption of chocolate in the test volunteers had no
effect on the metabolic phenotype separation since class
clustering was already obtained on samples collected before
chocolate/placebo intake. This observation precludes the
segregation of classes due to residual metabolites or direct
metabolic effects of chocolate consumption and supports the
notion of stable metabolic imprinting linked to dietary prefer-
ences. The metabolic profiles collected on both test days, thus,
indicated that “chocolate preference” is an objectively definable
and measurable individual preference class, although we note
that dietary chocolate itself is likely to be only one indicator of
a more complex dietary preference background. The main
metabolic determinants in these metabotypes are the decreased
concentration of LDL and the elevated level of albumin in the
“chocolate desiring” group. Albumin, the most abundant
plasma protein, is involved in many physiological processes
including transport of free fatty acids generated from the
lipoprotein lipase action in the lipoprotein metabolism. A
relationship between albumin concentration and apoprotein
B-100 secretion and LDL catabolism has also been reported
on a human hepatocyte model.25 Thus, intriguingly, the choco-
late-preferring class has intrinsically different lipoprotein and
lipid status even in the absence of chocolate stimulation.

Furthermore, the class-specific metabolic phenotype is also
encoded in the urinary profiles, suggesting both distinct energy
and microbiota metabolism. The increased urinary excretion
of PAG and citrate in the “chocolate desiring” subjects suggests
a different modulation of the tricarboxylic acid cycle,26 as well
as variations in renal tubular pH and its subsequent changes
in aconitase activity.27 Moreover, the relative higher urinary
levels of carnitine and N-acetyl-carnitine observed in the
“chocolate indifferent” group could be related to a different
basal energy metabolism, for example, lipid oxidation, in
relation with the trend observed with the excretion of the
ketone bodies acetone and acetoacetate.28,29 Aromatic com-
pounds, such as phenylacetate and hippurate derivatives,
methylamines, many short chain fatty acids, and their hydroxyl-
ation products are strongly associated with gut microbiotal
metabolism24,30-33 some of them being previously associated
with chocolate consumption.34 The changes in urinary excretion
of trigonelline indicate a class-specific metabolism of niacin,
an essential vitamin involved in major physiological functions
as a coenzyme in tissue respiration, carbohydrate, and lipid
metabolism. Niacin requirements are satisfied by both dietary
sources and biosynthesis through a tryptophan-mediated
metabolism ensured by the liver and the gut microflora.35 In
addition to this, class-specific changes between the levels of
the aromatic metabolites 4-HPA and 2-HHP on the one hand,
and between TMA, DMG, and glycine on the other hand,
provide further evidence of a gut microbial oriented metabo-
lism depending on chocolate preferences.

In addition, the correlation matrix between aromatic me-
tabolites illustrates class-specific mammalian-microbial co-

metabolism. For instance, the significant correlations of PAG
with the microbial metabolites 4-HPA and 4-cresol sulfate in
the whole population may highlight a relationship between
microflora activity and the host metabolism of aromatic
compounds. Furthermore, the conversion of 4-HPA to 4-cresol
sulfate exhibits a negative correlation in the urine profiles of
“chocolate desiring” subjects, which corresponds to a molecular
process that has been associated with the presence of Clostrid-
ium difficile,30 but possibly other Clostridial strains as well. This
observation suggests a differential management of the meta-
bolic pool of the precursor 4-HPA by gut bacteria. Interestingly,
the correlation of 2-HHP with hippurate, two metabolites
deriving from the metabolism of dietary flavonoids and hy-
droxycinnamates by colon microorganisms,36 and the particular
correlation of trigonelline with 2-HHP, might indicate a specific
microbial modulation of dietary flavonoids and niacin me-
tabolism in “chocolate indifferent” subjects. Altogether, these
findings suggest differential mammalian-microbial metabolism
for the considered metabolites between the “chocolate desir-
ing” and the “chocolate indifferent” individuals.

Our observations demonstrate imprinted differences in the
gut microbiotal metabolic activities of the individuals that
appear to depend on their previous dietary consumption habits.
These results are supported by previous reports on the impact
of dietary habits on the re-colonization of the gut microflora11,34

and imply that dietary influences on microbial activities may
be much more subtle than previously suspected. Indeed, it is
widely thought that the gut microbial populations in individuals
are stable,37,38 but these data suggest that metabolic activity of
the gut microbes and, consequently, the metabolites that are
fed to the host may be more finely modulated by diet than
previously thought. We note that a specific dietary preference
appears to influence the functional ecology and biochemistry
of the gut in healthy individuals in the sense that excreted
metabolites closely reflect the total metabolic activities of the
microbiome.

In conclusion, these data suggest the occurrence of a
metabolic imprinting of the basal metabolic phenotype in
relation to a behavioral/psychological dietary preference that
is characterized by “chocolate desiring” or “chocolate indif-
ference”. This imprinting is independent of the ingested food,
as chocolate consumption versus placebo has no direct effect.
The plasma metabotype variation with preference class is
mainly characterized by differences in the lipoprotein profiles.
In addition, the metabolic differences observed in urine suggest
considerable differences in gut microbial metabolic activities
that may be of long-term health significance to the host. The
observed metabolic imprinting provides evidence for a link
between specific dietary preference patterns and metabolic
phenotype. Obtaining broader and more profound insights into
the cause and effects of the metabolic differences underlying
dietary preferences would have considerable implications. The
nutrimetabonomics approach presented here, which allows
human nutritional preference to be linked to metabolic pheno-
types of individuals, can then be extended to a range of
functional food products and eating habits. In particular, the
comparison of metabolic biomarkers associated with different
eating habits would assess if similar molecular mechanisms are
involved across different “desiring” phenotypes. Such applica-
tions of nutrimetabonomics will provide a future basis for
classification of dietary responses and the possibility of opti-
mized or personalized nutritional management.
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Abbreviations: CPMG, Carr-Purcell-Meiboom-Gill; NMR,
nuclear magnetic resonance; O-PLS-DA, orthogonal projection
to latent structure discriminant analysis.
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